Appendix A

AP BIOLOGY EQUATIONS AND FORMULAS

Statistical Analysis and Probability

Mean
$\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$

Standard Error of the Mean*

$S E_{\bar{x}}=\frac{S}{\sqrt{n}}$
Standard Deviation*
$S=\sqrt{\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n-1}}$
Chi-Square
$\chi^{2}=\sum \frac{(o-e)^{2}}{e}$
Chi-Square Table

p value	Degrees of Freedom							
	1	2	3	4	5	6	7	8
0.05	3.84	5.99	7.82	9.49	11.07	12.59	14.07	15.51
0.01	6.64	9.21	11.34	13.28	15.09	16.81	18.48	20.09

Laws of Probability

If A and B are mutually exclusive, then:

$$
P(\mathrm{~A} \text { or } \mathrm{B})=P(\mathrm{~A})+P(\mathrm{~B})
$$

If A and B are independent, then:

$$
P(\mathrm{~A} \text { and } \mathrm{B})=P(\mathrm{~A}) \times P(\mathrm{~B})
$$

Hardy-Weinberg Equations

$p^{2}+2 p q+q^{2}=1 \quad p=$ frequency of the dominant allele in a population
$p+q=1$
$q=$ frequency of the recessive allele in a population
$\bar{x}=$ sample mean
$n=$ size of the sample
$s=$ sample standard deviation (i.e., the sample-based estimate of the standard deviation of the population)
$o=$ observed results
$e=$ expected results
Degrees of freedom are equal to the number of distinct possible outcomes minus one.

Metric Prefixes

$\underline{\text { Factor }}$		Prefix	
10^{9}		Symbol	
10^{6}		mega	G
10^{3}		kilo	M
10^{-2}		centi	c
10^{-3}	milli	m	
10^{-6}	micro	μ	
10^{-9}	nano	n	
10^{-12}	pico	p	

Mode $=$ value that occurs most frequently in a data set
Median = middle value that separates the greater and lesser halves of a data set
Mean = sum of all data points divided by number of data points
Range $=$ value obtained by subtracting the smallest observation (sample minimum) from the greatest (sample maximum)

[^0]

[^0]: * For the purposes of the AP Exam, students will not be required to perform calculations using this equation; however, they must understand the underlying concepts and applications.

